Question #c976d

1 Answer
Aug 26, 2016

See below

Explanation:

Given two vectors vec a, vec ba,b their sum is

vec s = vec a + vec bs=a+b. Now computing the norm of vec ss and squaring

norm (vec s)^2 = norm( vec a + vec b)^2 = norm (vec a)^2+2 << vec a, vec b >> + norm( vec b)^2s2=a+b2=a2+2a,b+b2

The scalar product

<< vec a, vec b >> = norm vec a norm vec b cos(hat(vec a, vec b))a,b=abcos(ˆa,b) has a maximum when cos(hat(vec a, vec b))=1cos(ˆa,b)=1 and a minimum when cos(hat(vec a, vec b))=-1cos(ˆa,b)=1 so

min norm(vec s)^2 = norm (vec a)^2+norm(vec b)^2-2norm vec a norm vec b and

max norm(vec s)^2 = norm (vec a)^2+norm(vec b)^2+2norm vec a norm vec b

Finally, when two vectors vec a, vec b are aligned, their sum is a minimum or a maximum deppending on their relative orientation:

concordant a maximum
discordant a minimum