Question #0d253

1 Answer
Aug 26, 2016

sqrt(i) = pm sqrt(2)/2(1+i)

Explanation:

Using de Moivre's identity

e^(ix) = cosx + i sin x

we have

e^(i (pi/2+2kpi))=i, k=0,pm1,pm2,cdots so

sqrt(i) = sqrt(e^(i (pi/2+2kpi)))=e^(i( pi/4+kpi))=e^(i(pi)/4)e^(i kpi)

but

e^(i(pi)/4)=cos(pi/4)+isin(pi/4) and e^(ikpi) = (-1)^k

Finally

sqrt(i) =pmsqrt(2)/2(1+i)