How do you solve the system (x+y)2+3(x−y)=30 and xy+3(x−y)=11 ?
1 Answer
(1+√6,−1+√6)
(1−√6,−1−√6)
(5,−2)
(2,−5)
Explanation:
Notice that:
(x+y)2−4xy=(x−y)2
So we can get a quadratic in
−14=30−4⋅11
−14=((x+y)2+3(x−y))−4(xy+3(x−y))
−14=((x+y)2−4xy)+(3−12)(x−y)
−14=(x−y)2−9(x−y)
Add
0=(x−y)2−9(x−y)+14
0=((x−y)−2)((x−y)−7)
So
Case
From the first given equation, we have:
30=(x+y)2+3(x−y)
30=(2y+2)2+6=4(y+1)2+6
Subtract
4(y+1)2=24
Hence:
(y+1)2=6
So:
y+1=±√6
So
y=−1±√6
with corresponding values of
So solutions:
(x,y)=(1+√6,−1+√6)
(x,y)=(1−√6,−1−√6)
Case
From the first given equation, we have:
30=(x+y)2+3(x−y)
30=(2y+7)2+21
Subtract
(2y+7)2=9
Hence:
2y+7=±√9=±3
So:
2y=−7+3=−4
or:
2y=−7−3=−10
Hence
Then we have corresponding values for
Hence solutions:
(x,y)=(5,−2)
(x,y)=(2,−5)
graph{((x+y)^2+3(x-y)-30)(xy+3(x-y)-11) = 0 [-7.22, 12.78, -6.36, 3.64]}