How do you solve the system (x+y)2+3(xy)=30 and xy+3(xy)=11 ?

1 Answer
Sep 18, 2016

(x,y) is one of:

(1+6,1+6)

(16,16)

(5,2)

(2,5)

Explanation:

Notice that:

(x+y)24xy=(xy)2

So we can get a quadratic in (xy) by subtracting 4 times the second equation from the first...

14=30411

14=((x+y)2+3(xy))4(xy+3(xy))

14=((x+y)24xy)+(312)(xy)

14=(xy)29(xy)

Add 14 to both ends to get:

0=(xy)29(xy)+14

0=((xy)2)((xy)7)

So xy=2 or xy=7


Case xy=2

From the first given equation, we have:

30=(x+y)2+3(xy)

30=(2y+2)2+6=4(y+1)2+6

Subtract 6 from both ends and transpose to get:

4(y+1)2=24

Hence:

(y+1)2=6

So:

y+1=±6

So

y=1±6

with corresponding values of x given by x=y+2

So solutions:

(x,y)=(1+6,1+6)

(x,y)=(16,16)


Case xy=7

From the first given equation, we have:

30=(x+y)2+3(xy)

30=(2y+7)2+21

Subtract 21 from both ends and transpose to get:

(2y+7)2=9

Hence:

2y+7=±9=±3

So:

2y=7+3=4

or:

2y=73=10

Hence y=2 or y=5

Then we have corresponding values for x using x=y+7

Hence solutions:

(x,y)=(5,2)

(x,y)=(2,5)

graph{((x+y)^2+3(x-y)-30)(xy+3(x-y)-11) = 0 [-7.22, 12.78, -6.36, 3.64]}