Question #573d2

1 Answer
Sep 21, 2016

(3-sqrt(3))/6336

Explanation:

In the given trigonometric expression first we must light on some formulas included :

cos((5pi)/6)=cos(pi-(pi/6))cos(5π6)=cos(π(π6))
And we know that
cos(pi-alpha)=-cos(alpha)cos(πα)=cos(α)
So,
color(blue)(cos((5pi)/6)=cos(pi-pi/6)= -cos(pi/6)=-sqrt(3)/2cos(5π6)=cos(ππ6)=cos(π6)=32

Now we have:
tan((7pi)/6)=tan(pi+pi/6)=tan(pi/6)tan(7π6)=tan(π+π6)=tan(π6)
Knowing the formula that says:
tan(pi+alpha)=tan(alpha)tan(π+α)=tan(α)
We have:
color(red)(tan((7pi)/6)=tan(pi/6)=sqrt(3)/3)tan(7π6)=tan(π6)=33

Let's substitute the answers in the expression given above:
sin(pi/6)+cos((5pi)/6)+tan((7pi)/6)sin(π6)+cos(5π6)+tan(7π6)
=1/2+color(blue)(-sqrt(3)/2)+color(red)(sqrt(3)/3)=12+32+33
=(3-sqrt(3))/6=336