Question #b5c34
2 Answers
We seek:
lim_(x rarr 0) (tan2x-sin2x)/x^2 = 0
Explanation:
We seek:
L = lim_(x rarr 0) (tan2x-sin2x)/x^2
If we put
L = lim_(x rarr 0) (d/dx(tan2x-sin2x))/(d/dx x^2)
\ \ \ = lim_(x rarr 0) (2sec^2x-2cos2x)/(2x)
\ \ \ = lim_(x rarr 0) (sec^2x-cos2x)/(x)
Again, we have an indeterminate form
L = lim_(x rarr 0) (d/dx(sec^2x-cos2x))/(d/dx x)
\ \ \ = lim_(x rarr 0) (2secxsecxtanx+2sinx)/(1)
\ \ \ = 2lim_(x rarr 0) 2secx^2tanx+sinx
\ \ \ = 2(0+0)
\ \ \ = 0
Explanation:
Let us find the Limit L without using L'Hospital's Rule.
We will use
Knowing that,
we have,
Enjoy Maths.!