Question #b5c34

2 Answers
Sep 16, 2017

We seek:

lim_(x rarr 0) (tan2x-sin2x)/x^2 = 0

Explanation:

We seek:

L = lim_(x rarr 0) (tan2x-sin2x)/x^2

If we put x=09 we note both numerator and denominator are both 0, so we have an indeterminate form 0/0, and as such we can apply L'Hôpital's Rule to give:

L = lim_(x rarr 0) (d/dx(tan2x-sin2x))/(d/dx x^2)
\ \ \ = lim_(x rarr 0) (2sec^2x-2cos2x)/(2x)
\ \ \ = lim_(x rarr 0) (sec^2x-cos2x)/(x)

Again, we have an indeterminate form 0/0, and as such we can apply L'Hôpital's Rule again to give:

L = lim_(x rarr 0) (d/dx(sec^2x-cos2x))/(d/dx x)
\ \ \ = lim_(x rarr 0) (2secxsecxtanx+2sinx)/(1)
\ \ \ = 2lim_(x rarr 0) 2secx^2tanx+sinx
\ \ \ = 2(0+0)
\ \ \ = 0

Sep 16, 2017

0.

Explanation:

Let us find the Limit L without using L'Hospital's Rule.

We will use lim_(theta to 0) tantheta/theta=1.

Knowing that, tan 2x=(2tanx)/(1-tan^2x), &, sin2x=(2tanx)/(1+tan^2x),

we have,

tan2x-sin2x,

=(2tanx)/(1-tan^2x)-(2tanx)/(1+tan^2x),

=2tanx{{(1+tan^2x)-(1-tan^2x)}/((1-tan^2x)(1+tan^2x)}},

=(4tan^3x)/(1-tan^4x)xxx^3/x^3,

=4*(tanx/x)^3*(x^2*x)/(1-tan^4x).

rArr (tan2x-sin2x)/x^2=4*(tanx/x)^3*x/(1-tan^4x).

:. L=lim_(x to 0)4*(tanx/x)^3*x/(1-tan^4x),

=4*1^3*0/(1-0^4),

rArr L=0.

Enjoy Maths.!