If y >0 forall x then p > 0 because p is the coeficient of x^2 and y(x) cannot have x crossings so y(0) = p-6 > 0
Anyway the x crossings are given at
x=(-f pm sqrt[f^2 + 24 p - 4 p^2])/(2 p) so if
f^2+24p-4p^2<0 no feasible crossings
or solving for p
p < 1/2 (6 - sqrt[6^2 + f^2]) and p > 1/2 (6 + sqrt[6^2 + f^2])
Concluding
p > 6 and p > 1/2 (6 + sqrt[6^2 + f^2]) or finally
p > 1/2 (6 + sqrt[6^2 + f^2])