Question #5266a

1 Answer
Nov 9, 2016

-1/(3(ln(x))^3)+C

Explanation:

I=int1/(x(ln(x))^4)dx

We can use substitution u=ln(x). Differentiating this shows that (du)/dx=1/x, or du=1/xdx. This is already present in our integral, but we can make it clearer:

I=int1/(ln(x))^4(1/xdx)=intunderbrace((ln(x))^-4)_(u^-4)overbrace((1/xdx))^(du)=intu^-4du

We can now use the integration rule intu^ndu=u^(n+1)/(n+1)+C:

I=u^(-4+1)/(-4+1)+C=u^(-3)/(-3)+C=-1/(3u^3)+C

Since u=ln(x):

I=-1/(3(ln(x))^3)+C