Question #5266a
1 Answer
Nov 9, 2016
Explanation:
I=int1/(x(ln(x))^4)dx
We can use substitution
I=int1/(ln(x))^4(1/xdx)=intunderbrace((ln(x))^-4)_(u^-4)overbrace((1/xdx))^(du)=intu^-4du
We can now use the integration rule
I=u^(-4+1)/(-4+1)+C=u^(-3)/(-3)+C=-1/(3u^3)+C
Since
I=-1/(3(ln(x))^3)+C