Calling #n=2014# we have
#2014³ - 2013³ + 2012³ - 2011³ + ... + 2³- 1³= sum_(k=1)^(n/2)(2k)^3-sum_(k=1)^(n/2)(2k-1)^3 #
but
#sum_(k=1)^n k^3 =((n(n+1))/2)^2#
Now
#sum_(k=1)^(n/2)(2k)^3=2^3sum_(k=1)^(n/2)k^3 = 2^3((n/2(n/2+1))/2)^2#
and
#sum_(k=1)^(n/2)(2k-1)^3=((n(n+1))/2)^2-2^3((n/2(n/2+1))/2)^2#
and
#sum_(k=1)^(n/2)(2k)^3-sum_(k=1)^(n/2)(2k-1)^3 =2xx2^3((n/2(n/2+1))/2)^2-((n(n+1))/2)^2#
#=(n/2(n+2))^2-(n/2(n+1))^2=(n/2)^2((n+2)^2-(n+1)^2)=#
#=(n/2)^2(2n+3)#
in this case
#2n+3=4031=29 xx 139#
so the largest perfect square is #(2014/2)^2= 1007^2#