Prove that the largest isosceles triangle that can be drawn in a circle, is an equilateral triangle?

1 Answer
Mar 19, 2017

Please see below.

Explanation:

Let their be an isosceles triangle ABC inscribed in a circle as shown, in which equal sides ACAC and BCBC subtend an angle xx at the center. It is apparent that side ABAB subtends an angle 360^0-x3600x at the center (as shown). Note that for equilateral triangles all these angles will be (2pi)/32π3.

enter image source here

As the area of the triangle portion subtended by an angle xx is R^2/2sinxR22sinx,

the complete area of triangle ABC is

A=R^2/2(sinx+sinx+sin(360-2x)A=R22(sinx+sinx+sin(3602x)

= R^2/2(2sinx-sin2x)R22(2sinxsin2x)

= R^2(sinx-sinxcosx)R2(sinxsinxcosx)

= R^2sinx(1-cosx)R2sinx(1cosx)

For maximization we should have (dA)/(dx)=0dAdx=0

i.e. R^2(cosx(1-cosx)+sinx xx sinx)=0R2(cosx(1cosx)+sinx×sinx)=0

or cosx-cos^2x+1-cos^2x=0cosxcos2x+1cos2x=0

or 2cos^2x-cosx-1=02cos2xcosx1=0

or 2cos^2x-2cosx+cosx-1=02cos2x2cosx+cosx1=0

or 2cosx(cosx-1)+1(cosx-1)=02cosx(cosx1)+1(cosx1)=0

or (2cosx+1)(cosx-1)=0(2cosx+1)(cosx1)=0

Hence cosx=-1/2cosx=12 or cosx=1cosx=1

i.e. x=(2pi)/3x=2π3 or x=0x=0

But for a triangle x!=0x0

hence x=(2pi)/3x=2π3

and hence for maximum area triangle must be equilateral.