Question #3b8d9

1 Answer
Oct 31, 2016

#(sin5pi)/12 = (sqrt6 - sqrt2) / 4#

Explanation:

This requires intermediate algebra skills.

We are simply stating this in another way:

#(sin5pi)/12 = sin (π/4 + π/6)#

Using an identity (#cos (a + b) = cos a cos b - sin a sin b#) to represent this so that we can use more to simplify them afterwards:

#cos(pi/6 + pi/4) =(cospi/4)( cos pi/6) + (sinpi/4)( sin pi/6) #

Now we can simply substitute the values we memorized to this:

#= (sqrt3 / 2) ( sqrt2 / 2) - (1/2) (sqrt2 / 2)#

Therefore, we can state that:

#=sqrt6 / 4 - sqrt2 / 4#

Thus,

#:. (sqrt6 - sqrt2) / 4#

Hope this helped :)!