Question #65e7a

1 Answer
Nov 6, 2016

Please see the explanation for the steps leading to the answer:
(-1)/((x + h - 8)(x - 8))

Explanation:

GIven: f(x) = 1/(x - 8)

Then f(x + h) = 1/(x + h - 8)

Substituting into the difference quotient:

{1/(x + h - 8) - 1/(x - 8)}/h

Multiply by 1 in the form ((x + h - 8)(x - 8))/((x + h - 8)(x - 8))

{1/(x + h - 8) - 1/(x - 8)}/h((x + h - 8)(x - 8))/((x + h - 8)(x - 8))

Multiply by the 1s in the upper numerators and h in the lower denominator:

{((x + h - 8)(x - 8))/(x + h - 8) - ((x + h - 8)(x - 8))/(x - 8)}/(h(x + h - 8)(x - 8))

Now, I will show you which factors cancel in the upper part:

{(cancel((x + h - 8))(x - 8))/cancel((x + h - 8)) - ((x + h - 8)cancel((x - 8)))/cancel((x - 8))}/(h(x + h - 8)(x - 8))

Remove the canceled factors:

{(x - 8) - (x + h - 8)}/(h(x + h - 8)(x - 8))

Distribute the implicit -1:

{x - 8 - x - h + 8}/(h(x + h - 8)(x - 8))

When we combine like terms in the numerator, we are left with -h:

(-h)/(h(x + h - 8)(x - 8))

-h/h reduces to -1:

(-1)/((x + h - 8)(x - 8))

Now it will be safe for you to let hto0