How do you find a quadratic function that passes through the points (1, 4)(1,4), (-1, 6)(1,6) and (-2, 16)(2,16) ?

2 Answers
Nov 6, 2016

Function is y=3x^2-x+2y=3x2x+2

Explanation:

Let the quadratic function be y=ax^2+bx+cy=ax2+bx+c. As it passes through (1,4)(1,4), (-1,6)(1,6) and -2,162,16, we will have

a(1)^2+b*1+c=4a(1)2+b1+c=4 i.e. a+b+c=4a+b+c=4 ................................(1)

a(-1)^2+b*(-1)+c=6a(1)2+b(1)+c=6 i.e. a-b+c=6ab+c=6 ................................(2)

a(-2)^2+b*(-2)+c=6a(2)2+b(2)+c=6 i.e. 4a-2b+c=164a2b+c=16 ................................(3)

Adding (1) and (2) gives us 2a+2c=102a+2c=10

i.e. a+c=5a+c=5 and b=-1b=1................................(4)

Multiplying (1) by 22 and adding it to (3), we get

2a+2b+2c+4a-2b+c=2xx4+162a+2b+2c+4a2b+c=2×4+16

or 6a+3c=246a+3c=24 i.e. 2a+c=82a+c=8 ................................(5)

Subtracting (4) from (5) a=3a=3 and hence c=2c=2

and function is y=3x^2-x+2y=3x2x+2
graph{3x^2-x+2 [-3, 3, -2, 18]}

Nov 6, 2016

f(x) = 3x^2-x+2f(x)=3x2x+2

Explanation:

Given:

(1, 4)(1,4), (-1, 6), (-2, 16)(1,6),(2,16)

We can immediately write down a formula for a quadratic that goes through these points by constructing terms for each distinct value of xx we want to match:

f(x) = color(blue)(4)*((x-(color(blue)(-1)))(x-(color(blue)(-2))))/(((color(blue)(1))-(color(blue)(-1)))((color(blue)(1))-(color(blue)(-2)))) +f(x)=4(x(1))(x(2))((1)(1))((1)(2))+

color(white)(f(x) =) color(blue)(6)*((x-(color(blue)(1)))(x-(color(blue)(-2))))/(((color(blue)(-1))-(color(blue)(1)))((color(blue)(-1))-(color(blue)(-2)))) +f(x)=6(x(1))(x(2))((1)(1))((1)(2))+

color(white)(f(x) =) color(blue)(16)*((x-(color(blue)(1)))(x-(color(blue)(-1))))/(((color(blue)(-2))-(color(blue)(1)))((color(blue)(-2))-(color(blue)(-1))))f(x)=16(x(1))(x(1))((2)(1))((2)(1))

color(white)(f(x)) = color(blue)(4) * ((x+1)(x+2))/((2)(3)) + color(blue)(6) * ((x-1)(x+2))/((-2)(1)) + color(blue)(16) * ((x-1)(x+1))/((-3)(-1))f(x)=4(x+1)(x+2)(2)(3)+6(x1)(x+2)(2)(1)+16(x1)(x+1)(3)(1)

color(white)(f(x)) = 2/3 (x^2+3x+2) - 3 (x^2+x-2) + 16/3(x^2-1)f(x)=23(x2+3x+2)3(x2+x2)+163(x21)

color(white)(f(x)) = 3x^2-x+2f(x)=3x2x+2

This works by adding together the desired multiples of quadratics that take the value 11 at a given xx coordinate and 00 at the others.

graph{(y-(3x^2-x+2))(8(x-1)^2+(y-4)^2-0.02)(8(x+1)^2+(y-6)^2-0.02)(8(x+2)^2+(y-16)^2-0.02)=0 [-5.35, 4.7, -3, 20]}

In general, given three points (x_1, y_1)(x1,y1), (x_2, y_2)(x2,y2) and (x_3, y_3)(x3,y3) with x_1, x_2, x_3x1,x2,x3 all distinct, a quadratic function through them is given by:

f(x) = y_1 ((x-x_2)(x-x_3))/((x_1-x_2)(x_1-x_3)) + y_2 ((x-x_1)(x-x_3))/((x_2-x_1)(x_2-x_3)) + y_3 ((x-x_1)(x-x_2))/((x_3-x_1)(x_3-x_2))f(x)=y1(xx2)(xx3)(x1x2)(x1x3)+y2(xx1)(xx3)(x2x1)(x2x3)+y3(xx1)(xx2)(x3x1)(x3x2)