Question #e63af Calculus Using Integrals to Find Areas and Volumes Definite Integrals with Substitution 1 Answer Narad T. Jan 4, 2017 The answer ==−73504=−0.14484 Explanation: We need ∫xndx=xn+1n+1+C(x≠−1) Therefore, ∫10x6(4x2+x−5)dx =∫10(4x8+x7−5x6)dx =[4x99+x88−5x77]10 =(49+18−57)−(0) =224+63−360504 =−73504=−0.14484 Answer link Related questions How do you do definite integrals with substitution? How do you find the integral ∫21e1xx2dx ? How do you find the integral ∫10x⋅e−x2dx ? How do you find the integral ∫130dx3√(1+2x)2 ? How do you find the integral ∫10x⋅√1−x2dx ? How do you find the integral ∫e4edxx⋅√ln(x)dx ? How do you find the integral ∫3112(1+5x)5dx ? How do you find the integral ∫2010x√3−x2dx ? How do you find the integral ∫10x2⋅ex3dx ? Question #23877 See all questions in Definite Integrals with Substitution Impact of this question 2148 views around the world You can reuse this answer Creative Commons License