What is (sqrt(5)+i)^6 in the form a+bi?
2 Answers
Explanation:
(sqrt(5)+i)^2 = (sqrt(5))^2+2sqrt(5)i+i^2 = 4+2sqrt(5)i
(4+2sqrt(5)i)^2 = 4^2+2(4)(2sqrt(5)i)+(2sqrt(5)i)^2
color(white)((4+2sqrt(5)i)^2) = 16+16sqrt(5)i-20
color(white)((4+2sqrt(5)i)^2) = -4+16sqrt(5)i
So:
(sqrt(5)+i)^6 = (4+2sqrt(5)i)(-4+16sqrt(5)i)
color(white)((sqrt(5)+i)^6) = -16+64sqrt(5)i-8sqrt(5)i-160
color(white)((sqrt(5)+i)^6) = -176+56sqrt(5)i
Check
We can make a rudimentary check of the answer by making sure that:
abs(-176+56sqrt(5)i) = abs(sqrt(5)+i)^6
We find:
abs(sqrt(5)+i) = sqrt((sqrt(5))^2+1^2) = sqrt(5+1) = sqrt(6)
abs(-176+56sqrt(5)i) = sqrt((-176)^2+(56sqrt(5))^2) = sqrt(30976+15680)
= sqrt(46656) = sqrt(6^6) = (sqrt(6))^6