Question #362bd

2 Answers
Nov 18, 2016

2log_e(sqrtx+1)

Explanation:

Note that 1/(x+sqrt(x))=1/(sqrtx(sqrtx+1)) and also that
d/dx(sqrtx+1)=1/2(1/sqrtx) so

1/(sqrtx(sqrtx+1))=2(d/dx(sqrtx+1))/(sqrtx+1) so

intdx/(x+sqrt(x))=int1/(x+sqrt(x))dx=int2(d/dx(sqrtx+1))/(sqrtx+1)dx=2log_e(sqrtx+1)

Nov 18, 2016

The answer is =2ln(1+sqrtx)+C

Explanation:

The two writing represent the same integral.

Let I=intdx/(x+sqrtx)

Multiply numerator and denominator by x-sqrtx

I=int((x-sqrtx)dx)/((x+sqrtx)(x-sqrtx))

=int((x-sqrtx)dx)/(x^2-x)

Solving by substitution

Let u=sqrtx ;
u^2=x

u^4 =x^2

du=dx/(2sqrtx)

dx=2udu

I=int(u^2-u)(2udu)/(u^4-u^2)

=2int(u^2(u-1)du)/(u^2(u^2-1))

=2int(cancel(u-1)du)/((u+1)cancel(u-1))

=2ln(u+1)

=2ln(1+sqrtx)+C