How do you show that cosx1−sinx=secx+tanx?
1 Answer
Dec 4, 2016
We know that
cosx1−sinx=1cosx+sinxcosx
cosx1−sinx=1+sinxcosx
Multiply the left side by the conjugate of the denominator. The conjugate of
cosx1−sinx×1+sinx1+sinx=1+sinxcosx
cosx+cosxsinx1−sin2x=1+sinxcosx
Use the identity
cosx(1+sinx)cos2x=1+sinxcosx
1+sinxcosx=1+sinxcosx
LHS=RHS
Identity Proved!
Hopefully this helps!