How do you show that cosx1sinx=secx+tanx?

1 Answer
Dec 4, 2016

We know that secθ=1cosθ and tanθ=sinθcosθ.

cosx1sinx=1cosx+sinxcosx

cosx1sinx=1+sinxcosx

Multiply the left side by the conjugate of the denominator. The conjugate of a+b is ab, for example.

cosx1sinx×1+sinx1+sinx=1+sinxcosx

cosx+cosxsinx1sin2x=1+sinxcosx

Use the identity sin2θ+cos2θ=1cos2θ=1sin2θ.

cosx(1+sinx)cos2x=1+sinxcosx

1+sinxcosx=1+sinxcosx

LHS=RHS

Identity Proved!

Hopefully this helps!