Question #9ed66

1 Answer
Nov 28, 2016

Given

#"wt of the object in air"=320N#

#"wt of the object in water"=255N#

#"wt of the object in oil"=295N#

We know
#"the density of water"= d_w=1000kgm^-3#

#"acceleration due to gravity "g=9.8ms^-2#

Wt of displaced water by the object
#="Its wt in air"-"wt in water"#

#=320-255=65N#

So mass of displaced water #m_w=65/9.8kg=6.63kg#

Volume of displaced water or volume of the object #v=m_w/d_w=6.63/1000m^3=6.63xx10^-3m^3#

#"mass of the object"=m ="its wt"/g=320/9.8kg=32.65kg#

a) #"density of the object"=d=m/v=32.65/(6.63xx10^-3)kgm^-3=4924.6kgm^-3#

b) The wt of displaced oil by the object
#="Its wt in air"-"wt in oil"#

#=320-295=25N#

If the density of oil be #d_o#

then

#vxxd_o xxg=25#

#=>d_o=25/(vxxg)=25/(6.63xx10^-3xx9.8)kgm^-3#

#=384.77kgm^-3#