Question #61687

2 Answers
Nov 29, 2016

sin^2x-cos^2x=sqrt2/2

=>-cos2x=sqrt2/2=1/sqrt2

=>cos2x=-1/sqrt2=-cos(pi/4)

cos2x=cos(pi-pi/4)=cos((3pi)/4)

=>2x=2npi±((3pi)/4)

=>x=npi±((3pi)/8)," where "n in ZZ

Nov 29, 2016

(3pi)/8 + kpi
(5pi)/8 + kpi

Explanation:

Use trig identity: (sin^2 x - cos^2 x = - cos 2x)
-cos 2x = sqrt2/2
cos 2x = - sqrt2/2
Unit circle and trig table of special arcs -->
cos 2x = -sqrt2/2 gives 2 solutions arcs for 2x:
2x = (3pi)/4 and 2x = (5pi)/4 (co-terminal to (-3pi)/4)

a. 2x = (3pi)/4 + 2kpi
x = (3pi)/8 + kpi

b. 2x = (5pi)/4 + 2kpi
x = (5pi)/8 + kpi