We know that
pi/2-(4pi)/9=pi/18π2−4π9=π18 so
[(sin(pi/18) -sin((4pi)/9)), (sin((4pi)/g) " "sin(pi/18)) ]=[(sin(pi/2-(4pi)/9),-sin((4pi)/9)),(sin((4pi)/9),sin(pi/2-(4pi)/9))] = [(cos((4pi)/9),-sin((4pi)/9)),(sin((4pi)/9),cos((4pi)/9))] =R((4pi)/9)
Here R(cdot) represents a rotation. The question now is:
How apart we are from 2kpi? Because R(2kpi)=I_2,k=0,1,2,cdots so from
2kpi=n(4pi)/9 we obtain
k = 2(n/9) so n=9