We know that
#pi/2-(4pi)/9=pi/18# so
#[(sin(pi/18) -sin((4pi)/9)), (sin((4pi)/g) " "sin(pi/18)) ]=[(sin(pi/2-(4pi)/9),-sin((4pi)/9)),(sin((4pi)/9),sin(pi/2-(4pi)/9))] = [(cos((4pi)/9),-sin((4pi)/9)),(sin((4pi)/9),cos((4pi)/9))] =R((4pi)/9)#
Here #R(cdot)# represents a rotation. The question now is:
How apart we are from #2kpi#? Because #R(2kpi)=I_2,k=0,1,2,cdots# so from
#2kpi=n(4pi)/9# we obtain
#k = 2(n/9)# so #n=9#