If point of inflection of y=e^(-x^2)y=e−x2 is at y=1/e^ay=1ea, a=..........?
(a) -1/2
(b) -1
(c) 1
(d) 1/2
(a)
(b)
(c)
(d)
1 Answer
(d)
Explanation:
The point of inflection of
So first we need to find the second derivative.
y=e^(-x^2)
To differentiate this, first use the chain rule.
dy/dx=e^(-x^2)(d/dx(-x^2))
color(white)(dy/dx)=-2xe^(-x^2)
Now the second derivative can be found through the product rule:
(d^2y)/(dx^2)=-2(d/dxx)e^(-x^2)-2x(d/dxe^(-x^2))
color(white)((d^2y)/(dx^2))=-2e^(-x^2)-2xe^(-x^2)(d/dx(-x^2))
color(white)((d^2y)/(dx^2))=-2e^(-x^2)-2xe^(-x^2)(-2x)
color(white)((d^2y)/(dx^2))=4x^2e^(-x^2)-2e^(-x^2)
color(white)((d^2y)/(dx^2))=2e^(-x^2)(2x^2-1)
So, we want to find when this changes sign. Note that
Setting
This means there are points of inflection at both
The
y(1/sqrt2)=e^(-(1/sqrt2)^2)=e^(-1/2)=1/e^(1/2)
y(-1/sqrt2)=e^(-(-1/sqrt2)^2)=e^(-1/2)=1/e^(1/2)
Thus
graph{e^(-x^2) [-2.5, 2.5, -0.87, 1.63]}