Question #42131

1 Answer
Feb 10, 2017

sqrt(2 + sqrt3)/2

Explanation:

Unit circle and property of complement arcs -->
sin ((5pi)/12) = sin (-pi/12 + (6pi)/12) =
= sin (-pi/12 + pi/2) = cos (pi/12)
Find cos (pi/12) by using trig identity:
2cos^2 a = 1 + cos 2a
In this case:
2cos^2 (pi/12) = 1 + cos (pi/6) = 1 + sqrt3/2 = (2 + sqrt3)/2
cos^2 (pi/12) = (2 + sqrt3)/4
cos (pi/12) = +- sqrt(2 + sqrt3)/2
Since pi/12 is in Quadrant 1, take the positive value.
Finally,
sin ((5pi)/12) = cos (pi/12) = sqrt(2 + sqrt3)/2