How do we prove that ((n),(k))=sum_(l=k)^n((l-1),(k-1))?
1 Answer
Use the identity
Explanation:
Recall the identity
To prove this as
=
(nxx(n-1)!)/(kxx(k-1)!(n-k)(n-k-1)!) =
((n-1)!)/((k-1)!(n-k-1)!)[n/(k(n-k))] =
((n-1)!)/((k-1)!(n-k-1)!)[((n-k)+k)/(k(n-k))] =
((n-1)!)/((k-1)!(n-k-1)!)[1/k+1/(n-k)] =
((n-1)!)/(k(k-1)!(n-k-1)!)+((n-1)!)/(k(k-1)!(n-k)(n-k-1)!) =
((n-1)!)/(k!(n-k-1)!)+((n-1)!)/(k!(n-k)!)=((n-1),(k))+((n-1),(k-1))
Hence
((n-1),(k-1))=((n-2),(k-1))+((n-2),(k-2))
Hence
Now similarly split
((n-2),(k-2))=((n-3),(k-2))+((n-3),(k-3)) and
Going on similarly, we get