How do we prove that ((n),(k))=sum_(l=k)^n((l-1),(k-1))?

1 Answer
Dec 27, 2016

Use the identity ((n),(k))=((n-1),(k))+((n-1),(k-1)). See below for details.

Explanation:

Recall the identity ((n),(k))=((n-1),(k))+((n-1),(k-1))

To prove this as ((n),(k))=(n!)/(k!(n-k)!)

=(nxx(n-1)!)/(kxx(k-1)!(n-k)(n-k-1)!)

=((n-1)!)/((k-1)!(n-k-1)!)[n/(k(n-k))]

=((n-1)!)/((k-1)!(n-k-1)!)[((n-k)+k)/(k(n-k))]

=((n-1)!)/((k-1)!(n-k-1)!)[1/k+1/(n-k)]

=((n-1)!)/(k(k-1)!(n-k-1)!)+((n-1)!)/(k(k-1)!(n-k)(n-k-1)!)

=((n-1)!)/(k!(n-k-1)!)+((n-1)!)/(k!(n-k)!)=((n-1),(k))+((n-1),(k-1))

Hence ((n),(k))=((n-1),(k))+((n-1),(k-1)), bur from this we get

((n-1),(k-1))=((n-2),(k-1))+((n-2),(k-2))

Hence ((n),(k))=((n-1),(k))+((n-2),(k-1))+((n-2),(k-2))

Now similarly split ((n-2),(k-2)) into

((n-2),(k-2))=((n-3),(k-2))+((n-3),(k-3)) and

((n),(k))=((n-1),(k))+((n-2),(k-1))+((n-3),(k-2))+((n-3),(k-3))

Going on similarly, we get

((n),(k))=sum_(l=k)^n((l-1),(k-1))