Question #c5ffc

1 Answer
Apr 9, 2017

I'm assuming your question is:

What's dy/dxdydx when y=(x+1)^(x^2)y=(x+1)x2?

y=(x+1)^(x^2)y=(x+1)x2

Take the natural logarithm of both sides:

ln(y)=ln((x+1)^(x^2))ln(y)=ln((x+1)x2)

ln(y)=x^2ln(x+1)ln(y)=x2ln(x+1)

Differentiate both sides.

1/ydy/dx=2xln(x+1)+x^2/(x+1)1ydydx=2xln(x+1)+x2x+1

dy/dx=y(2xln(x+1)+x^2/(x+1))dydx=y(2xln(x+1)+x2x+1)

dy/dx=(x+1)^(x^2)(2xln(x+1)+x^2/(x+1))dydx=(x+1)x2(2xln(x+1)+x2x+1)