Find the value of?

(1) arccos(-sqrt3/2)-arcsin(-sqrt3/2)-arccos(1/2)+arcsin(sqrt3/2)
(2) arcsin(-1/2)+arcsin(-sqrt3/2)
(3) sin(arccos(-sqrt3/2))=sin150^o

2 Answers
Dec 15, 2016

(1) 210^o=(7pi)/12

(2) -90^o=-pi/2

(3) sin(arccos(-sqrt3/2))=1/2

Explanation:

The trigonometric ratios of standard angles are given in

![https://www.youtube.com/watch?v=RKETb3BzI6A](useruploads.socratic.org)
However, before we use this let us remember that range for inverse trigonometric functions are - [-pi/2.pi/2] for arcsin, arccsc, arctan and arccot, while for arccos and arcsec tange is [0,p].

Considering this we solve above as follows:

(1) arccos(-sqrt3/2)-arcsin(-sqrt3/2)-arccos(1/2)+arcsin(sqrt3/2)

= 150^o-(-60^o)-60^o +60^o

= 150^o +60^o-60^o +60^o=210^o or (7pi)/12

(2) arcsin(-1/2)+arcsin(-sqrt3/2)

= -30^o-60^o=-90^o=-pi/2

(3) sin(arccos(-sqrt3/2))=sin150^o=1/2

Dec 15, 2016

google image

To solve this type of problem we are to remember the range of inverse trigonometric function as shown in above figure

1)
arccos(-sqrt3/2)-arcsin(-sqrt2/2)-arccos(1/2)+arcsin(sqrt3/2)

=arccos(-cos(pi/6))-arcsin(-sin(pi/4))-arccos(cos(pi/3))+arcsin(sin(pi/3))

=arccos(cos(pi-pi/6))-arcsinsin(-pi/4)-arccos(cos(pi/3))+arcsin(sin(pi/3))

=(5pi)/6+pi/4-pi/3+pi/3

=(10pi+3pi)/12=(13pi)/12

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2).arcsin(-1/2)+arcsin(-sqrt3/2)

=arcsin(sin(-pi/6))+arcsin(sin(-pi/3))

=-pi/6-pi/3=-pi/2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3).sin(arccos(-√3/2))

=sin(arccos(cos(pi-pi/6))

=sin(pi-pi/6)=sin(pi/6)=1/2