What is the the value of int sqrt(tanx/(sinxcosx)) dx?
1 Answer
Dec 17, 2016
Explanation:
Start by simplifying the expression within the integral.
=intsqrt((sinx/cosx)/(sinxcosx))dx
=intsqrt((sinx)/(cosxsinxcosx))dx
=intsqrt(1/cos^2x)dx
=int(1/cosx)dx
=int(secx)dx
This is a tricky integral to do. Multiply everything by
=int(secx xx (secx + tanx)/(secx + tanx))dx
=int(sec^2x + secxtanx)/(secx + tanx)dx
Let
=int(du)/u
=ln|u| + C
= ln|secx + tanx| + C
Hopefully this helps!