Question #28025

1 Answer
Dec 18, 2016

LHS=sin (pi/9) sin ((2pi)/9 )sin ((3pi)/9 )sin ((4pi)/9) LHS=sin(π9)sin(2π9)sin(3π9)sin(4π9)

=sin (pi/9) sin ((2pi)/9 )sin (pi/3 )sin ((4pi)/9) =sin(π9)sin(2π9)sin(π3)sin(4π9)

=sqrt3/2sin (pi/9) sin ((2pi)/9 )sin ((4pi)/9) =32sin(π9)sin(2π9)sin(4π9)

=sqrt3/4(2sin (pi/9) sin ((4pi)/9 ))sin ((2pi)/9) =34(2sin(π9)sin(4π9))sin(2π9)

=sqrt3/4(cos ((4pi-pi)/9) -cos ((4pi+pi)/9 ))sin ((2pi)/9) =34(cos(4ππ9)cos(4π+π9))sin(2π9)

=sqrt3/4(cos (pi/3) -cos ((5pi)/9 ))sin ((2pi)/9) =34(cos(π3)cos(5π9))sin(2π9)

=sqrt3/4(1/2 -cos ((5pi)/9 ))sin ((2pi)/9) =34(12cos(5π9))sin(2π9)

=sqrt3/8(sin((2pi)/9) -2cos ((5pi)/9 )sin ((2pi)/9) )=38(sin(2π9)2cos(5π9)sin(2π9))

=sqrt3/8(sin((2pi)/9)-(sin((7pi)/9) -sin((3pi)/9 ))=38(sin(2π9)(sin(7π9)sin(3π9))

=sqrt3/8(sin((2pi)/9)-(sin(pi-(2pi)/9) -sin(pi/3 ))=38(sin(2π9)(sin(π2π9)sin(π3))

=sqrt3/8(cancelsin((2pi)/9)-cancelsin((2pi)/9) +sqrt3/2)

=3/16=RHS

Proved