Question #f236b

1 Answer
Dec 19, 2016

cos2xcos2x

Explanation:

Use the following identities to solve the problem

tantheta = sintheta/costhetatanθ=sinθcosθ

cos^2theta + sin^2theta = 1cos2θ+sin2θ=1

cos2theta = cos^2theta - sin^2thetacos2θ=cos2θsin2θ

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

=(1 - sin^2x/cos^2x)/(1 + sin^2x/cos^2x)=1sin2xcos2x1+sin2xcos2x

= ((cos^2x - sin^2x)/cos^2x)/((cos^2x+ sin^2x)/cos^2x)=cos2xsin2xcos2xcos2x+sin2xcos2x

= (cos^2x- sin^2x)/cos^2x * cos^2x/(cos^2x + sin^2x)=cos2xsin2xcos2xcos2xcos2x+sin2x

= cos^2x - sin^2x=cos2xsin2x

= cos2x=cos2x

Hopefully this helps!