r=(23*5)/(x+7) => r^2=((23*5)/(x+7))^2=(23*5)^2/(x+7)^2=((23)^2(5)^2)/((x+7)(x+7))
=((20+3)^2(25))/(x*x+7x+7x+7(7))
=(((20)(20)+(3)(20)+(3)(20)+(3)(3))(25))/(x^2+14x+49)
=((400+60+60+9)(25))/(x^2+14x+49)
=((400+120+9)(25))/(x^2+14x+49)=((529)(25))/(x^2+14x+49)
=((529)(20+5))/(x^2+14x+49)=(529(20)+529(5))/(x^2+14x+49)
=(2(5290)+5290(1/2))/(x^2+14x+49)=(10580+2645)/(x^2+14x+49)
13225/(x^2+14x+49)