Find the derivative of x^(-1)x1 from the definition of derivative?

1 Answer
Feb 17, 2017

d/(dx) x^(-1)=-1/x^2ddxx1=1x2

Explanation:

From the definition of derivative of a function f(x)f(x),

d/(dx) f(x)=Lt_(h->0)(f(x+h)-f(x))/hddxf(x)=Lth0f(x+h)f(x)h

As f(x)=x^(-1)=1/xf(x)=x1=1x

d/(dx) f(x)=Lt_(h->0)(1/(x+h)-1/x)/hddxf(x)=Lth01x+h1xh

= Lt_(h->0)((x-x-h)/(x^2+hx))/hLth0xxhx2+hxh

= Lt_(h->0)(-h)/(h(x^2+hx))Lth0hh(x2+hx)

= Lt_(h->0)(-1)/(x^2+hx)Lth01x2+hx

= -1/x^21x2