Question #d64b4

2 Answers
Jan 26, 2017

Please refer to the Explanation for the Proof.

Explanation:

Let arc tan(1/2)=alpha, arc tan(1/5)=beta, and, arc tan(1/8)=gammaarctan(12)=α,arctan(15)=β,and,arctan(18)=γ.

:. tanalpha=1/2, tanbeta=1/5, &, tangamma=1/8.

Recall that,

arc tan theta =x, x in RR iff tan theta=x, theta in (-pi/2,pi/2).

Since, all tanalpha,tanbeta" &, "tangamma gt 0; alpha,beta,gamma in (0,pi/2).

Now, tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)

=(1/2+1/5)/(1-1/10)=(7/10)/(9/10)=7/9, and, is +ve, so, alpha+beta in (0,pi/2).

Call alpha+beta=delta," so, "tandelta=7/9, delta in (0,pi/2).

Finally, tan(gamma+delta)=(tangamma+tandelta)/(1-tangammatandelta)

=(1/8+7/9)/(1-7/72)=(65/72)/(65/72)=1

Here, delta, gamma in (0,pi/2) rArr gamma+delta in (0,pi); & because, tan(gamma+delta)=1,

:. gamma+delta=pi/4

rArr alpha+beta+gamma=pi/4, or,

arc tan(1/2)+arc tan(1/5)+arc tan(1/8)=pi/4.

Jan 26, 2017

See the Proof in Explanation.

Explanation:

As a Second Method, we can solve the Problem by using the following Useful Result :

arc tanx+arc tany=arc tan(frac(x+y)(1-xy)); x,y in RR^+ xy lt 1.

"The L.H.S.={arc tan(1/2)+arc tan(1/5)}+arctan(1/8)

arc tan(frac(1/2+1/5) (1-1/10))+arc tan(1/8)...[because,(1/2)(1/5)=1/10lt 1]

=arc tan(7/9)+arc tan(1/8)

=arc tan (frac (7/9+1/8) (1-7/72))...[because,(7/9)(1/8)=7/72lt1]

=arc tan(frac(65/72)(65/72))

=arc tan1

=pi/4

Hence the Proof.