Let arc tan(1/2)=alpha, arc tan(1/5)=beta, and, arc tan(1/8)=gammaarctan(12)=α,arctan(15)=β,and,arctan(18)=γ.
:. tanalpha=1/2, tanbeta=1/5, &, tangamma=1/8.
Recall that,
arc tan theta =x, x in RR iff tan theta=x, theta in (-pi/2,pi/2).
Since, all tanalpha,tanbeta" &, "tangamma gt 0; alpha,beta,gamma in (0,pi/2).
Now, tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)
=(1/2+1/5)/(1-1/10)=(7/10)/(9/10)=7/9, and, is +ve, so, alpha+beta in (0,pi/2).
Call alpha+beta=delta," so, "tandelta=7/9, delta in (0,pi/2).
Finally, tan(gamma+delta)=(tangamma+tandelta)/(1-tangammatandelta)
=(1/8+7/9)/(1-7/72)=(65/72)/(65/72)=1
Here, delta, gamma in (0,pi/2) rArr gamma+delta in (0,pi); & because, tan(gamma+delta)=1,
:. gamma+delta=pi/4
rArr alpha+beta+gamma=pi/4, or,
arc tan(1/2)+arc tan(1/5)+arc tan(1/8)=pi/4.