At what points do the functions y=x2−x and y=sinπx intersect?
1 Answer
These two equations intersect at the points
Explanation:
First, let us take a look at:
y=x2−x
We can factor this as:
y=x(x−1)
so this quadratic has
It has minimum value at the midpoint of these two
y=12(12−1)=−14
So note that
The intersections of
0=x2−x−1
0=x2−x+14−54
0=(x−12)2−(√52)2
0=(x−12−√52)(x−12+√52)
That is:
x=12±√52
Note that
Note that
So
Outside these intervals,
Now consider
-
If
x∈[12−√2,0) thensin(πx)<0 -
If
x=0 thensin(πx)=0=x2−x -
If
x∈(0,1) thensin(πx)>0 -
If
x=1 thensin(πx)=0=x2−x -
If
x∈(1,12+√52) thensin(πx)<0
So in each of the intervals
So the only two points of intersection are:
(x,y)=(0,0)
(x,y)=(1,0)
graph{(y-x^2+x)(y - sin(pix)) = 0 [-2.105, 2.895, -1.19, 1.31]}