How do you find a formula for #sum_(r=0)^n r2^r# ?
2 Answers
Explanation:
Note that:
#(n+1)2^(n+1)+sum_(r=0)^n r2^r = sum_(r=0)^(n+1) r2^r#
#color(white)((n+1)2^(n+1)+sum_(r=0)^n r2^r) = sum_(r=1)^(n+1) r2^r#
#color(white)((n+1)2^(n+1)+sum_(r=0)^n r2^r) = sum_(r=1)^(n+1) 2^r + sum_(r=1)^(n+1) (r-1)2^r#
#color(white)((n+1)2^(n+1)+sum_(r=0)^n r2^r) = (2^(n+2)-2) + 2sum_(r=1)^(n+1) (r-1)2^(r-1)#
#color(white)((n+1)2^(n+1)+sum_(r=0)^n r2^r) = (2^(n+2)-2) + 2sum_(r=0)^n r2^r#
Subtract
#sum_(r=0)^n r2^r = (n+1)2^(n+1)-2^(n+2)+2#
#color(white)(sum_(r=0)^n r2^r) = (n-1)2^(n+1)+2#
Explanation:
now making