Solve a^2+b^2+c^2>= a+b+ca2+b2+c2a+b+c ?

1 Answer
Feb 1, 2017

See below.

Explanation:

a^2+b^2+c^2>= a+b+c->a^2+b^2+c^2-a-b-c>= 0a2+b2+c2a+b+ca2+b2+c2abc0

So we can arrange this as an optimization problem

Find

(a,b,c)_@= "argmin"(a^2+b^2+c^2-a-b-c)(a,b,c)=argmin(a2+b2+c2abc)

subjected to abc=1abc=1

If this solution gives

a_@^2+b_@^2+c_@^2-a_@-b_@-c_@ ge 0a2+b2+c2abc0 then the question is proved.

To prove this we will use the Lagrange Multipliers technique. The lagrangian is

L(a,b,c,lambda)=a^2+b^2+c^2-a-b-c+lambda(abc-1)L(a,b,c,λ)=a2+b2+c2abc+λ(abc1)

The stationary point conditions are

{(2 a-1 + b c lambda=0),( 2 y-1 + a c lambda=0), (2 c-1 + a b lambda=0),( a b c-1=0):}

or

{(2 a-1 + lambda/a=0),( 2 b-1 + lambda/b=0), (2 c-1 + lambda/c=0),( a b c-1=0):}

which gives

a=b=c=1/4 (1 pm sqrt(1 - 8 lambda))

or

(1/4 (1 pm sqrt(1 - 8 lambda)))^3=1->1/4 (1 pm sqrt(1 - 8 lambda))=1

giving lambda=-1

The solution is a_@=b_@=c_@ = 1

This is a minimum point because the hessian of a^2+b^2+c^2-a-b-c is ((2,0,0),(0,2,0),(0,0,2)) which is definite positive.

The minimum value is 0. So it is proved