Minimum and maximum values for abs(x^2-16) given abs(x-1) le 1 ?

1 Answer
Oct 22, 2017

See below.

Explanation:

abs(x-1) le 1 hArr abs(x-1) +epsilon^2 = 1 with epsilon in RR or

sqrt((x-1)^2) = 1-epsilon^2 or

(x-1)^2 = (1-e^2)^2 hArr (x-epsilon^2)(x-2+epsilon^2)=0 or

0 le x le 2

Now max abs(x+4) subjected to 0 le x le 2 is 6 for x=2

and

max abs(x^2-16) = 16 and
min abs(x^2-16) = 9 for 0 le x le 2 then

9 le abs(x^2-16) le 16 for 0 le x le 2 then