How do you solve 5^(x^2) = 25/(5^x)?

1 Answer
Feb 3, 2017

{-2, 1}

Explanation:

Cross multiply:

5^(x^2) * 5^x = 25

Simplify using a^n * a^m = a^(n + m)

5^(x^2 + x) = 25

Write in equivalent bases.

5^(x^2 + x) = 5^2

x^2 + x =2

x^2 + x - 2 =0

(x + 2)(x- 1) = 0

x= -2 and 1

Hopefully this helps!