What is the derivative of √5x+√5x+√5x ?
1 Answer
Nov 13, 2017
ddx√5x+√5x+√5x
=12√5x+√5x+√5x(5+12√5x+√5x(5+52√5x))
Explanation:
ddx√5x+√5x+√5x
=ddx(5x+(5x+(5x)12)12)12
=12(5x+(5x+(5x)12)12)−12⋅ddx(5x+(5x+(5x)12)12)
=12(5x+(5x+(5x)12)12)−12⋅(5+12(5x+(5x)12)−12⋅ddx(5x+(5x)12))
=12(5x+(5x+(5x)12)12)−12⋅(5+12(5x+(5x)12)−12⋅(5+12(5x)−12⋅ddx(5x)))
=12(5x+(5x+(5x)12)12)−12⋅(5+12(5x+(5x)12)−12⋅(5+12(5x)−12⋅5))
=12√5x+√5x+√5x(5+12√5x+√5x(5+52√5x))