Find cos−1x−cos−1y, if x=14 and y=23? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Cesareo R. · Shwetank Mauria Feb 7, 2017 cos−1(112(2+5√3)) Explanation: Let z=cos−1x−cos−1y then cosz=cos(cos−1x−cos−1y) but cos(a−b)=cosacosb+sinasinb so cosz=cos(cos−1x)cos(cos−1y)+sin(cos−1x)sin(cos−1y) but cos(cos−1x)=x and sin(cos−1x)=√1−x2 so cosz=xy+√1−x2√1−y2 so cosz=14⋅23+√1−(14)2⋅√1−(23)2 = 16+√1516⋅√59=16+512√3 = 112(2+5√3) so z=cos−1(112(2+5√3)) Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin(0.31))? What is sin(sin−1√22)? How do you find the exact value of cos(tan−1√3)? How do you evaluate sec−1√2? How do you find cos(cot−1√3) without a calculator? How do you rewrite sec2(tan−1x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin−1(0.1)? How do you solve the inverse trig function cos−1(−√22)? How do you solve the inverse trig function sin(sin−1(13))? See all questions in Inverse Trigonometric Properties Impact of this question 1765 views around the world You can reuse this answer Creative Commons License