The formula for the area of a triangle is:
A = (hb)/2A=hb2
Where:
AA is the area of the triangle
hh is the height of the triangle from the base
bb is the length of the base
Substituting the expressions from the problem gives:
A = ((5a + 2)(4a - 1))/2A=(5a+2)(4a−1)2
To multiply the two terms in the numerator you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.
A = ((color(red)(5a) + color(red)(2))(color(blue)(4a) - color(blue)(1)))/2A=(5a+2)(4a−1)2 becomes:
A = ((color(red)(5a) xx color(blue)(4a)) - (color(red)(5a) xx color(blue)(1)) + (color(red)(2) xx color(blue)(4a)) - (color(red)(2) xx color(blue)(1)))/2A=(5a×4a)−(5a×1)+(2×4a)−(2×1)2
A = (20a^2 - 5a + 8a - 2)/2A=20a2−5a+8a−22
We can now combine like terms:
A = (20a^2 + [-5 + 8]a - 2)/2A=20a2+[−5+8]a−22
A = (20a^2 + 3a - 2)/2A=20a2+3a−22
Or
A = (20a^2)/2 + (3a)/2 - 2/2A=20a22+3a2−22
A = 10a^2 + 3/2a - 1A=10a2+32a−1