Question #6455f

1 Answer
Mar 8, 2017

l=(n sqrt[36 + h (h + 12 pi+ h pi^2)])/h

Explanation:

The string center describes a helix around the cylinder with parametric equation given by

p(t) = ((r+h/2)cost,(r+h/2)sint, alpha t)

the helix pitch is calculated with the condition

p(t+2pi)-p(t)=(0,0,h)

so we have alpha (2pi) = h -> alpha = h/(2pi)

The string is wounded around the cylinder from t=0 to t = t_f and we know that

t_f h/(2pi) = n -> t_f = (2pi n)/h

the string length is given by

l = int_(t=0)^(t=t_f) (ds)/(dt) dt

Here d/(dt) p(t) = (-(h/2 + r) sint, (h/2 + r) cost, h/(2pi)) = ((dx)/(dt),(dy)/(dt), (dz)/(dt))

and (ds)/(dt) = sqrt(((dx)/(dt))^2+((dy)/(dt))^2+((dz)/(dt))^2)

giving

(ds)/(dt) = sqrt((h^2 (1 + pi^2))/(4 pi^2) + h r + r^2)

so finally

l = (npi)/h sqrt((h^2 (1 + pi^2))/(4 pi^2) + h r + r^2)

substituting r=3/pi the result is

l=(n sqrt[36 + h (h + 12 pi+ h pi^2)])/h