If natural numbers a, b, c, da,b,c,d satisfy a^2+b^2 = 41a2+b2=41 and c^2+d^2=25c2+d2=25 then what monic quadratic in xx has zeros (a+b)(a+b) and (c+d)(c+d) ?

1 Answer
Feb 18, 2017

x^2-14x+45" "x214x+45 or " "x^2-16x+63 x216x+63

Explanation:

I will assume that "natural number" includes 00.

We may suppose that a <= bab and c <= dcd since swapping aa and bb or cc and dd does not change any of the expressions a^2+b^2a2+b2, c^2+d^2c2+d2, (a+b)(a+b) or (c+d)(c+d).

Hence:

a^2 <= 41/2" "a2412 so " "a = 0, 1, 2, 3 a=0,1,2,3 or 4" "4 and " "a^2 = 0, 1, 4, 9 a2=0,1,4,9 or 1616.

b^2 = 41 - a^2 = color(red)(cancel(color(black)(41))), color(red)(cancel(color(black)(40))), color(red)(cancel(color(black)(37))), color(red)(cancel(color(black)(32))) or 25.

c^2 <= 25/2" " so " "c = 0, 1, 2 or 3" " and " "c^2 = 0, 1, 4 or 9.

d^2 = 25-c^2 = 25, color(red)(cancel(color(black)(24))), color(red)(cancel(color(black)(21))) or 16.

So {a, b} = {4, 5} and {c, d} = {0, 5} or {3, 4}.

So a+b = 9 and c+d = 5 or 7.

So the polynomial we are looking for is one of:

(x-9)(x-5) = x^2-14x+45

(x-9)(x-7) = x^2-16x+63