How do you simplify (sqrt(4+h)-2)/h ?

1 Answer
Feb 25, 2017

(sqrt(4+h)-2)/h = 1/(sqrt(4+h)+2)

with exclusion h != 0

Explanation:

Given:

(sqrt(4+h)-2)/h

We find:

(sqrt(4+h)-2)/h = ((sqrt(4+h)-2)(sqrt(4+h)+2))/(h(sqrt(4+h)+2))

color(white)((sqrt(4+h)-2)/h) = ((4+h)-4)/(h(sqrt(4+h)+2))

color(white)((sqrt(4+h)-2)/h) = color(red)(cancel(color(black)(h)))/(color(red)(cancel(color(black)(h)))(sqrt(4+h)+2))

color(white)((sqrt(4+h)-2)/h) = 1/(sqrt(4+h)+2)

color(white)()
Footnote

This is the sort of expression you find involved in a limit problem, like:

What is: lim_(h->0) (sqrt(4+h)-2)/h ?

The tricky thing here is that both the numerator and denominator become 0 when h = 0, but we can find the limit using our simplification...

lim_(h->0) (sqrt(4+h)-2)/h = lim_(h->0) 1/(sqrt(4+h)+2)

color(white)(lim_(h->0) (sqrt(4+h)-2)/h) = 1/(sqrt(4+0)+2)

color(white)(lim_(h->0) (sqrt(4+h)-2)/h) = 1/(2+2)

color(white)(lim_(h->0) (sqrt(4+h)-2)/h) = 1/4