Solve? 5^(2xx x)-5^(x+3)+125=5^x

2 Answers
Feb 22, 2017

x=0 and 3

Explanation:

5^(2*x)-5^(x+3)+125=5^x

=>(5^x)^2-5^x*5^3+125=5^x

Let 5^x=y

=>y^2-125y+125=y

=>y^2-y-125y+125=0

=>y(y-1)-125(y-1)=0

=>(y-1)(y-125)=0

when y-1=0=>y=1

=>5^x=1=5^0

=>x=0

Again when y-125=0

=>5^x=125=5^3

=>x=3

x=0,3

Explanation:

We start with:

5^(2xx x)-5^(x+3)+125=5^x

Let's first see that 125=5^3:

5^(2xx x)-5^(x+3)+5^3=5^x

We can use the rules x^a xx x^b=x^(a+b) and (x^a)^b=x^(ab) to untangle the expressions:

(5^x)^2-(5^3)5^x+5^3=5^x

Let's try subtracting 5^x from both sides to get the x terms all on the left:

(5^x)^2-(5^3)5^x+5^3-5^x=0

We can combine the 5^x terms and see that we'll have -5^3-1=-125-1=126 of them:

(5^x)^2-(124)5^x+5^3=0

Let's set a=5^x:

a^2-126a+125=0

We can now factor this:

(a-125)(a-1)=0

a=1, 125

Let's now substitute back in:

5^x=1, 125

And take each solution separately:

5^x=1=>x=0

5^x=125=5^3=>x=3

Let's check the answers:

5^(2xx x)-5^(x+3)+125=5^0

5^(2xx 0)-5^(0+3)+125=1

5^0-5^3+5^3=1

1=1color(white)(000)color(green)sqrt

~~~~~

5^(2xx x)-5^(x+3)+125=5^x

5^(2xx 3)-5^(3+3)+125=5^3

5^6-5^6+125=5^3

125=125 color(white)(000)color(green)sqrt