We start with:
5^(2xx x)-5^(x+3)+125=5^x
Let's first see that 125=5^3:
5^(2xx x)-5^(x+3)+5^3=5^x
We can use the rules x^a xx x^b=x^(a+b) and (x^a)^b=x^(ab) to untangle the expressions:
(5^x)^2-(5^3)5^x+5^3=5^x
Let's try subtracting 5^x from both sides to get the x terms all on the left:
(5^x)^2-(5^3)5^x+5^3-5^x=0
We can combine the 5^x terms and see that we'll have -5^3-1=-125-1=126 of them:
(5^x)^2-(124)5^x+5^3=0
Let's set a=5^x:
a^2-126a+125=0
We can now factor this:
(a-125)(a-1)=0
a=1, 125
Let's now substitute back in:
5^x=1, 125
And take each solution separately:
5^x=1=>x=0
5^x=125=5^3=>x=3
Let's check the answers:
5^(2xx x)-5^(x+3)+125=5^0
5^(2xx 0)-5^(0+3)+125=1
5^0-5^3+5^3=1
1=1color(white)(000)color(green)sqrt
~~~~~
5^(2xx x)-5^(x+3)+125=5^x
5^(2xx 3)-5^(3+3)+125=5^3
5^6-5^6+125=5^3
125=125 color(white)(000)color(green)sqrt