Simplify (cotx)/(cscx-sinx)cotxcscxsinx?

1 Answer
Feb 24, 2017

(cotx)/(cscx-sinx)=secxcotxcscxsinx=secx

Explanation:

(cotx)/(cscx-sinx)cotxcscxsinx

= (cosx/sinx)/(1/sinx-sinx)cosxsinx1sinxsinx

= (cosx/sinx)/((1-sin^2x)/sinx)cosxsinx1sin2xsinx

= (cosx/sinx)/(cos^2x/sinx)cosxsinxcos2xsinx

= cosx/sinx xxsinx/cos^2xcosxsinx×sinxcos2x

= cancelcosx/cancelsinx xxcancelsinx/(cosx xx cancelcosx

= 1/cosx

= secx