How do you simplify (1-i)^31 ?

1 Answer
Oct 7, 2017

(1-i)^31 = 32768+32768i

Explanation:

Method using trigonometric form

1-i = sqrt(2)(cos(-pi/4)+isin(-pi/4))

So by de Moivre's rule:

(1-i)^31 = sqrt(2)^31(cos(31(-pi/4))+isin(31(-pi/4)))

color(white)((1-i)^31) = 2^(31/2)(cos(-8pi+pi/4)+isin(-8pi+pi/4)))

color(white)((1-i)^31) = 2^(31/2)(cos(pi/4)+isin(pi/4)))

color(white)((1-i)^31) = 2^15(1+i)

color(white)((1-i)^31) = 32768+32768i

Method using direct multiplication

(1-i)^32 = ((1-i)^2)^16

color(white)((1-i)^32) = (1-2i+i^2)^16

color(white)((1-i)^32) = (-2i)^16

color(white)((1-i)^32) = ((-2i)^2)^8

color(white)((1-i)^32) = (4i^2)^8

color(white)((1-i)^32) = (-4)^8

color(white)((1-i)^32) = ((-4)^2)^4

color(white)((1-i)^32) = 16^4

color(white)((1-i)^32) = 2^16

color(white)((1-i)^32) = 65536

So:

(1-i)^31 = (1-i)^32/(1-i)

color(white)((1-i)^31) = (65536(1+i))/((1-i)(1+i))

color(white)((1-i)^31) = (65536(1+i))/(1^2-i^2)

color(white)((1-i)^31) = (65536(1+i))/2

color(white)((1-i)^31) = 32768+32768i