lim_(x->0)(tan x - x)/x^3 = ?

1 Answer
Mar 1, 2017

-1/6

Explanation:

We know that sin x = x-x^3/(3!)+x^5/(5!)- cdots = sum_(k=0)^oo(-1)^k x^(2k+1)/((2k+1)!)

and also

sin x -x = -x^3/(3!)+x^5/(5!)- cdots

Now (tan x - x)/x^3 = (sinx-x cos x)/(x^3 cos x) and for small values on x we have

(tan x - x)/x^3 approx (sin x- x)/x^3 because then cos x approx 1

Putting all together

lim_(x->0)(tan x - x)/x^3 = lim_(x->0)(sin x- x)/x^3 = lim_(x->0)(-x^3/(3!)+x^5/(5!)- cdots)/x^3 = -1/(3!) = -1/6