To find the indefinite integral, let x = sectx=sect,
so that x^2 -1 = tan^2xx2−1=tan2x and dx = sect tant dtdx=secttantdt.
Upon substitution we will get
int dx/(x^2-1)^(3/2) = int (sec t tant)/tan^3t dt∫dx(x2−1)32=∫secttanttan3tdt
= int sect cot^2 t dt=∫sectcot2tdt
= int csct cot t dt = -csc t +C=∫csctcottdt=−csct+C
Since x = sectx=sect, we have cos t = 1/xcost=1x, so
sin t = sqrt(x^2-1)/xsint=√x2−1x and
-csct +C= -1/sint =-x/sqrt(x^2-1)+C−csct+C=−1sint=−x√x2−1+C
If the integrand should be abs(x^2-1)∣∣x2−1∣∣, Then for a < 1a<1, use
abs(x^2-1) = (1-x^2)∣∣x2−1∣∣=(1−x2).
In this case, substitute x = sintx=sint and integrate to get
x/sqrt(x^2-1)+Cx√x2−1+C