Question #9592b

1 Answer
Mar 3, 2017

To find the indefinite integral, let x = sectx=sect,

so that x^2 -1 = tan^2xx21=tan2x and dx = sect tant dtdx=secttantdt.

Upon substitution we will get

int dx/(x^2-1)^(3/2) = int (sec t tant)/tan^3t dtdx(x21)32=secttanttan3tdt

= int sect cot^2 t dt=sectcot2tdt

= int csct cot t dt = -csc t +C=csctcottdt=csct+C

Since x = sectx=sect, we have cos t = 1/xcost=1x, so

sin t = sqrt(x^2-1)/xsint=x21x and

-csct +C= -1/sint =-x/sqrt(x^2-1)+Ccsct+C=1sint=xx21+C

If the integrand should be abs(x^2-1)x21, Then for a < 1a<1, use

abs(x^2-1) = (1-x^2)x21=(1x2).

In this case, substitute x = sintx=sint and integrate to get

x/sqrt(x^2-1)+Cxx21+C