Question #fcc10 Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Nghi N. Mar 6, 2017 sin (x - pi/6)sin(x−π6) Explanation: sin (x + (11pi)/6) = sin (x - pi/6 + 2pi) = sin (x - pi/6)sin(x+11π6)=sin(x−π6+2π)=sin(x−π6) Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin (0.31))tan(arcsin(0.31))? What is \sin ( sin^{-1} frac{sqrt{2}}{2})sin(sin−1√22)? How do you find the exact value of \cos(tan^{-1}sqrt{3})cos(tan−1√3)? How do you evaluate \sec^{-1} \sqrt{2} sec−1√2? How do you find cos( cot^{-1} sqrt{3} )cos(cot−1√3) without a calculator? How do you rewrite sec^2 (tan^{-1} x)sec2(tan−1x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin^-1(0.1)sin−1(0.1)? How do you solve the inverse trig function cos^-1 (-sqrt2/2)cos−1(−√22)? How do you solve the inverse trig function sin(sin^-1 (1/3))sin(sin−1(13))? See all questions in Inverse Trigonometric Properties Impact of this question 1866 views around the world You can reuse this answer Creative Commons License