Factorize 2(a+b)+(a+b)/6+(a+b)^2-2?

1 Answer
Mar 13, 2017

2(a+b)+(a+b)/6+(a+b)^2-2=(a+b+13/12+sqrt457/12)(a+b+13/12-sqrt457/12)

Explanation:

2(a+b)+(a+b)/6+(a+b)^2-2

= (2+1/6)(a+b)+(a+b)^2-2

= 13/6(a+b)+(a+b)^2-2

= (a+b)^2+13/6(a+b)-2

Let a+b=x, then quadratic polynomial inside square bracket becomes x^2+13/6x-2 and as

x^2+13/6x-2

= x^2+2xx13/12xx x+(13/12)^2-2-(13/12)^2

= (x+13/12)^2-2-169/144

= (x+13/12)^2-457/144

= (x+13/12)^2-(sqrt457/12)^2

= (x+13/12+sqrt457/12)(x+13/12-sqrt457/12)

and substituting x with a+b, we get

2(a+b)+(a+b)/6+(a+b)^2-2=(a+b+13/12+sqrt457/12)(a+b+13/12-sqrt457/12)