What are the solutions of 100^(7x+1) = 1000^(3x-2)1007x+1=10003x−2 ?
1 Answer
Real valued solution:
x=-8/5x=−85
Complex valued solutions:
x = -8/5+(2kpii)/(5ln(10))" "x=−85+2kπi5ln(10) for any integerkk
Explanation:
Note that if
(a^b)^c = a^(bc)(ab)c=abc
So we find:
10^(14x+2) = 10^(2(7x+1)) = (10^2)^(7x+1) = 100^(7x+1)1014x+2=102(7x+1)=(102)7x+1=1007x+1
10^(9x-6) = 10^(3(3x-2)) = (10^3)^(3x-2) = 1000^(3x-2)109x−6=103(3x−2)=(103)3x−2=10003x−2
So if:
100^(7x+1) = 1000^(3x-2)1007x+1=10003x−2
then:
10^(14x+2) = 10^(9x-6)1014x+2=109x−6
Then either say "take common logarithms of both sides" or simply note that as a real-valued function
14x+2 = 9x-614x+2=9x−6
Subtract
5x=-85x=−8
Divide both sides by
x = -8/5x=−85
Footnote
There are also Complex valued solutions, which we can deduce from Euler's identity:
e^(ipi)+1 = 0eiπ+1=0
Hence:
e^(2kpii) = 1" "e2kπi=1 for any integerkk
Then:
10 = e^(ln 10)10=eln10
So:
10^x = e^(x ln 10)10x=exln10
So we find:
10^((2kpii)/ln(10)) = 1" "102kπiln(10)=1 for any integerkk
Hence we find:
10^(14x+2) = 10^(9x-6)1014x+2=109x−6
if and only if:
14x+2 = 9x-6 + (2kpii)/ln(10)" "14x+2=9x−6+2kπiln(10) for some integerkk
Hence:
5x = -8+(2kpii)/ln(10)5x=−8+2kπiln(10)
So:
x = -8/5+(2kpii)/(5ln(10))x=−85+2kπi5ln(10)