Question #3b3d4
1 Answer
The spin-only magnetic moment is most applicable to light-enough transition metals with minimal orbital contribution to
#bb(mu_S = 2.00023sqrt(S(S+1)))#
where
#[Ar]3d^9# ,#"Cu"^(2+)#
#[Ar]3d^8# ,#"Ni"^(2+)#
#[Ar]3d^6# ,#"Co"^(3+)#
#[Ar]3d^6# ,#"Fe"^(2+)#
Write out the orbital diagrams.
#ul(uarr darr)" "ul(uarr darr)" "ul(uarr darr)" "ul(uarr darr)" "ul(uarr color(white)(darr))#
#ul(uarr darr)" "ul(uarr darr)" "ul(uarr darr)" "ul(uarr color(white)(darr))" "ul(uarr color(white)(darr))#
#ul(uarr darr)" "ul(uarr color(white)(darr))" "ul(uarr color(white)(darr))" "ul(uarr color(white)(darr))" "ul(uarr color(white)(darr))#
One can clearly see the increasing number of unpaired electrons going from
#color(green)(mu_(S,3d^9)) = mu_(S,"Cu"^(2+)) = 2.00023sqrt(1/2(1/2+1)) = color(green)(1.732)#
#color(green)(mu_(S,3d^8)) = mu_(S,"Ni"^(2+)) = 2.00023sqrt(2/2(2/2+1)) = color(green)(2.829)#
#color(green)(mu_(S,3d^6)) = mu_(S,"Co"^(3+),"Fe"^(2+)) = 2.00023sqrt(4/2(4/2+1)) = color(green)(4.900)#
Alternatively,
#bb(mu_(S+L) = 2.00023sqrt(S(S+1) + 1/4L(L+1)))#
where
#color(green)(mu_(S+l,"Cu"^(2+))) = 2.00023sqrt(1/2(1/2+1) + 1/4*2(2+1)) = color(green)(3.000)#
#color(green)(mu_(S+l,"Ni"^(2+))) = 2.00023sqrt(2/2(2/2+1) + 1/4*3(3+1)) = color(green)(4.473)#
#color(green)(mu_(S+l,"Co"^(3+),"Fe"^(2+))) = 2.00023sqrt(4/2(4/2+1) + 1/4*2(2+1)) = color(green)(5.478)#
For instance,
Do note that the observed magnetic moments for each of these cations are
So,